Chapter 3 / 4: Oblique Triangle Trigonometry

Oblique triangles DO NOT have a right angle.

can be acute or obtuse.

No right angle = no SOH CAH TOA No right angle = no Pythagorean Thm

This unit will teach you two new rules for working with oblique triangles that will replace SOH CAH TOA and the Pythagorean Theorem.

The first of these two new rules is called:

The Sine Law

How did mathematicians come up with this new rule? They used known principles such as the sine ratio for right triangles.

$$sin B = \frac{h}{a}$$

$$\frac{1}{ab} = \frac{a \sin B}{ab}$$

$$\begin{pmatrix} c \\ h \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} D \end{pmatrix} \begin{pmatrix} B \end{pmatrix}$$

$$\Rightarrow \frac{\sin A}{a} = \frac{\sin B}{b}$$

$$sin A = \frac{h}{c}$$

$$sinc = \frac{h}{a}$$

asinc=
$$\frac{h}{a}$$
a
h=asinc

asinc= $\frac{h}{\alpha}$ h=asinc

h=csinA

. csinA = asinC

a:sinc

$$\frac{\cancel{\text{wsin}} = \cancel{\text{mis}} C}{\cancel{\text{ac}}}$$

$$\frac{b}{c}$$

$$\frac{\alpha \sin A}{\alpha \cos \alpha} = \frac{\alpha \sin C}{\alpha \cos \alpha} \Rightarrow \frac{\sin A}{\alpha} = \frac{\sin C}{c}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

$$\frac{and}{\sin A} = \frac{\sin C}{c}$$

$$\sin A = \sin B = \sin C$$

This formula is the Sine Law

When we use this rule we will be solving a proportion to find a missing side length or a missing angle measure.

Solve for the unknown side length to one decimal place:

$$\frac{q}{\sin 25^{\circ}} = \frac{15}{\sin 80^{\circ}}$$

Solve for the unknown side length to one decimal place:

$$\frac{5in^{25}}{\sin^{25}} = \frac{15}{\sin 80^{\circ}} \cdot \frac{\sin 25^{\circ}}{\sin 80^{\circ}}$$

$$q = \frac{15 \sin 25^{\circ}}{\sin 80^{\circ}}$$

$$q = 6.43706... \Rightarrow q = 6.44$$

Solve for the unknown angle measure to the nearest degree:

$$\frac{12}{\sin A} = \frac{14}{\sin 50^{\circ}}$$

Solve for the unknown angle measure to the nearest degree:

$$\frac{12}{\sin A} = \frac{14}{\sin 50^{\circ}}$$

$$\frac{12 \cdot \sin A}{\sin A} = \frac{12 \cdot \sin 50^{\circ}}{14}$$

$$\sin A = \frac{12 \sin 50}{14} = 0.6566095...$$

$$\angle A = 41.041805... \Rightarrow \angle A = 41^{\circ}$$

Check your understanding:

Handout:

#1(b)(c)(d)(e)(f), 2(b)(d)(e)

I highly encourage you to do the sketches, and not just solve for the side or angle.