Mathematics 9

Unit 3: Introduction to Polynomials

Three Mini-Lessons to Prepare us for Working with Polynomials

Learning Targets:

1. Model polynomials using algebra tiles.
2. Gain proficiency in writing polynomials in descending degree.
3. Evaluate polynomials using given values for the variables involved.

Modeling Polynomials with Algebra Tiles

Algebra tiles are square and rectangular shaped objects whose AREAS are used to represent different algebraic expressions.

The shape, size, and colour of the objects all mean something.

Coloured tiles represent positive values:

Area $=X^{2}$

Area $=x$

White tiles represent negative values:

Grouping together algebra tiles of the same shape and size creates monomials whose coefficients represent "how many of them are there". The coefficient will be negative if the shapes are white:

Grouping together algebra tiles of different shapes and sizes creates polynomials. The coefficients on each term represent "how many of that shape and size are there". Colour (or lack of colour) tells us whether we have positives or negatives:

Mathematics 9

Unit 3: Introduction to Polynomials
Examples: What polynomials are represented by the tiles?

Examples: Model each polynomial with algebra tiles:
$2 x^{2}+x$
$-x+4$
$x^{2}-2 x-1$

Show You Know

a) Model $-x^{2}+4 x-3$.
b) What expression is shown by the algebra tile model?

Mathematics 9

Unit 3: Introduction to Polynomials

Writing Polynomials in Descending Degree

When a polynomial is written in descending degree, it is easier to find the overall degree of the polynomial because it will be the exponent on the first term (called the "leading term")

Example:

Re-write the following in descending degree. What is the type and degree of the polynomial?
$3 x+5-4 x^{2}$

Practice: Re-write in descending degree, classify and state the degree.
a) $4 x+7 x^{2}$
b) $5 x-3 x^{3}$
c) $-1+5 x-7 x^{2}$

Evaluating Algebraic Expressions
 Substitute and evaluate

- replace the variables with the numbers given
- use brackets around the substituted values
- use BEDMAS to evaluate the resulting expression

Evaluate $\mathbf{2 x}+\mathbf{3 y}$ if $\mathbf{x}=\mathbf{1 0}$ and $\mathbf{y}=\mathbf{3}$

Mathematics 9

Unit 3: Introduction to Polynomials

Evaluate $-2 p-5 q$ if $p=1$ and $q=4$

Evaluate $\mathbf{3}(\mathrm{m}+2 \mathrm{n})+4$ if $\mathbf{m}=-\mathbf{2}$ and $\mathrm{n}=\mathbf{6}$

Evaluate $\mathbf{x y}+\mathbf{3 x}-\mathbf{y}$ if $\mathbf{x}=\mathbf{2}$ and $\mathbf{y}=\mathbf{4}$

Check your understanding:
Modeling with Algebra Tiles: pg. 179-180, \#11-14,
Naming, Degree, and Descending Degree: Worksheet \#1 - 30
Evaluating Algebraic Expressions: Worksheet \#1-12

