Mathematics 9

Unit 3: Introduction to Polynomials

Sec. 5.3: Adding and Subtracting Polynomials

Learning Targets - day 2

1. Determining the "opposite" of a given expression.
2. Subtract polynomials horizontally by "adding the opposite":

- Create the opposite expression for the second polynomial
- Drop the brackets
- Group the like terms
- Combine like terms
- Write our answers in descending degree

Opposites:

What is the opposite of a number like 5 ?

What is the opposite of a number like - 3 ?

What is the opposite of a monomial like $5 x$?

What is the opposite of a monomial like $-3 x$?

What is the opposite of a binomial like $5 x+4$?

What is the opposite of a binomial like $-3 x-2$?

What is the opposite of a trinomial like $2 x^{2}+3 x-4$?

The process of forming the "opposite" of a polynomial requires that we take the original polynomial and

- terms that had positive coefficients will have negative coefficients in the opposite expression
- terms that had negative coefficients will have positive coefficients in the opposite expression
- positive constants become negative constants in the opposite expression
- negative constants become positive constants in the opposite expression

You Try:

What is the opposite of each of these expressions:
(1) x
(2) $5-3 x$
(3) $7 x^{2}-5 x+1$

Mathematics 9

Unit 3: Introduction to Polynomials
Subtraction: It's the same as "adding the opposite"

With integers, suppose we wanted to calculate 8-15

We can write this problem as \qquad and it means the same thing and will give us the same answer:-7

We have changed "subtracting 15 " into " \qquad " (adding the opposite of 15).

Examples:

Subtract the polynomials horizontally by adding the opposite:
(1) $(2 x-3)-(-x+2)$
(2) $\left(5 x^{2}-x+4\right)-\left(2 x^{2}-3 x-1\right)$
(3) $\left(-2 a^{2}-4 a+1\right)-(-5 a+9)$

Mathematics 9

Unit 3: Introduction to Polynomials

You Try:

Subtract the following polynomials horizontally by adding the opposite. Write your answer in descending degree:

$$
\left(n^{2}+2 n-6\right)-\left(4 n^{2}-2 n+1\right)
$$

Check your understanding:

Worksheet 1: \#2, 4, 5, 6, 9
Worksheet 2: \#2, 4, 5, 6, 9
Text pg. 195-199, \#10, 11, 14, 15, 21

