Mathematics 9

Unit 3: Introduction to Polynomials

Sec. 5.2: Equivalent Expressions

Learning Targets

1. Identify like terms and unlike terms
2. How to combine like terms
3. Combining like terms in algebraic expressions to simplify the expressions.

Polynomials - what we already know:
Are made up of \qquad .
\qquad terms are just numbers.
\qquad terms always have one coefficient (in the front), but can have one or more variables.

Examples of different terms: $\quad x \quad 2 x \quad-x^{2} \quad-5 x y \quad 7 a^{2} b \quad-b c^{2}$

"Like" terms

Are groups of $\mathbf{2}$ or more terms that share \qquad :

If the terms only have one variable in them, it has to be the \qquad and the \qquad _.

The terms can have different \qquad , but the coefficients may also be the same.

Examples of pairs of like terms with one variable:

x and	$4 b$ and
$-3 x^{2}$ and	m^{2} and

If the terms contain more than one variable, they have to be exactly the same \qquad and the \qquad on all of the variables have to match each other.

Examples of like terms with more than one variable:
$x y$ and $-2 a^{2} b$ and

Mathematics 9

Unit 3: Introduction to Polynomials
\qquad terms are always considered to be like terms with other constant terms.

Example: 8 and ____ are like terms

"Unlike" terms

Terms that do not share the characteristics of like terms.

Examples of pairs of unlike terms:

$3 x$ and $2 y$
18 and 3 m \qquad

12ab and 5a \qquad
$4 x$ and $7 x^{2}$ \qquad
$-a^{2} b$ and $8 a b^{2}$

Example:

Each set of terms contains two or more like terms. Identify the like terms.
a) $5 b^{2}$
3bc
$-2 b$
7c
6b
b) $3 x^{2}$
$4 x y$
$-2 x^{2}$
$7 x^{2}$
$0.5 y$
c) $3 p q$
11
$-4 q^{2}$
-3
pq

You Try:

a) Give an example of 3 like terms
b) Identify the like terms in this list: 6t $3 \mathrm{~s} \quad 6 t^{2} \quad 6 s t \quad-8 s$

Mathematics 9

Unit 3: Introduction to Polynomials

Combining Like Terms

Algebraic expressions that contain like terms can be simplified by combining two or more like terms into one term.

Combining two or more like terms is done by simply \qquad
\qquad (using integer adding rules) and keeping the variable portion
unchanged.
$5 x$ and $9 x$ are like terms and can be combined.

Their coefficients are both positive, 5 and 9 . Combining $5+9$ gives us 14.

Therefore, combining $5 \mathbf{x}$ and $9 x$ we get \qquad
$\mathbf{3 b}$ and $\mathbf{- 8 b}$ are like terms and can be combined.

One coefficient is positive, 3 , and one coefficient is negative, -8 . Combining $\mathbf{3 + (- 8)}$ gives us $\mathbf{- 5}$.

Therefore, combining $\mathbf{3 b}$ and $-\mathbf{8 b}$ we get \qquad
$-6 y^{2}$ and $-3 y^{2}$ are like terms and can be combined.

Their coefficients are both negative, -6 and -3 . Combining $-6+(-3)$ gives us -9 .

Therefore, combining $-6 \mathbf{y}^{\mathbf{2}}$ and $-3 \mathbf{y}^{\mathbf{2}}$ we get \qquad

Combining Like Terms to Simplify Algebraic Expressions

Rearrange the terms to group the like terms together. You must move the $+/-$ signs that are in front of each term along with the term. Then, combine the like terms.
a) $4 x-2 x+3-6$
b) $3 x^{2}+3 x-1-x^{2}+4 x-2$
c) $4-x^{2}+2 x-5+3 x^{2}-2 x$

Mathematics 9

Unit 3: Introduction to Polynomials

Classifying polynomials:

In order to call an algebraic expression a "monomial" or "binomial" or "trinomial", etc., we first must make sure the expression does not contain any like terms.

Example

$4 \mathbf{x}+\mathbf{8 x}$ has two terms but is NOT actually a binomial because these are like terms that can be combined into one term.
$\mathbf{4 x}+\mathbf{8 x}=\mathbf{1 2 x}$ after combining like terms. This is a monomial.

In other words, a binomial is a polynomial made up of TWO UNLIKE TERMS.
And a trinomial is a polynomial made up of THREE UNLIKE TERMS.
Etc.

So when a problem asks you to "classify" a given polynomial, you must combine any like terms before you count the terms to classify the polynomial.

Example:

Combine like terms and then classify the polynomial that you have as a result.
a) $5 x-3 x^{2}+2 x-x^{2}$
b) $2 x-6-2 x+1$

