Sec. 5.2: Equivalent Expressions

Learning Targets

- 1. Identify like terms and unlike terms
- 2. How to combine like terms
- 3. Combining like terms in algebraic expressions to simplify the expressions.

Polynomials – what we already know:

Are made up of ______.

_____ terms are just numbers.

______terms always have one coefficient (in the front), but can have one or more variables.

Examples of different terms:	х	2x	-x ²	-5xv	7a²b	-bc ²
	<i>/</i> \	-/~	~~			

"Like" terms

Are groups of 2 or more terms that share				
If the terms only have one variable in and the	them, it has to be the			
The terms can have different also be the same.		, but the coefficients may		
Examples of pairs of like terms with	one variable:			
x and	4b and			
-3x ² and	m ² and			

If the terms contain more than one variable, they have to be exactly the same ______ and the ______ on all of the variables have to match each other.

Examples of like terms with more than one variable:

______ terms are always considered to be like terms with other constant

terms.

Example: 8 and _____ are like terms

"Unlike" terms

Terms that do not share the characteristics of like terms.

Examples of pairs of *unlike* terms:

3x and 2y	
18 and 3m	
12ab and 5a	
4x and 7x ²	
-a ² b and 8ab ²	

Example:

Each set of terms contains two or more like terms. Identify the like terms.

a)	5b ²	3bc	-2b	7c	6b
b)	3x ²	4ху	-2x ²	7x ²	0.5y
c)	Зрq	11	-4q ²	-3	pq

You Try:

a) Give an example of 3 like terms

b) Identify	the like	terms	in this list	t: 6t	35	6t ²	6st	-85
υ,	<i>j</i> iuciitiy		terni s	111 1113 1131	. 01		01	030	03

Combining Like Terms

Algebraic expressions that contain like terms can be *simplified* by <u>combining two or more like terms</u> <u>into one term</u>.

Combining two or more like terms is done by simply
(using integer adding rules) and keeping the variable portion
unchanged.
5x and 9x are like terms and can be combined.
Their coefficients are both positive, 5 and 9. Combining 5 + 9 gives us 14 .
Therefore, combining 5x and 9x we get
3b and -8b are like terms and can be combined.
One coefficient is positive, 3, and one coefficient is negative, -8. Combining 3 + (-8) gives us -5 .
Therefore, combining 3b and -8b we get
-6y ² and -3y ² are like terms and can be combined.
Their coefficients are both negative, -6 and -3. Combining -6 + (-3) gives us -9.
Therefore, combining -6y ² and -3y ² we get

Combining Like Terms to Simplify Algebraic Expressions

Rearrange the terms to group the like terms together. You must move the +/- signs that are in front of each term along with the term. Then, combine the like terms.

a) 4x - 2x + 3 - 6b) $3x^2 + 3x - 1 - x^2 + 4x - 2$

c) $4 - x^2 + 2x - 5 + 3x^2 - 2x$

Classifying polynomials:

In order to call an algebraic expression a "monomial" or "binomial" or "trinomial", etc., we first must make sure the expression does not contain any like terms.

Example:

4x + 8x has two terms but is **NOT** actually a <u>binomial</u> because these are like terms that can be combined into one term.

4x + 8x = 12x after combining like terms. This is a monomial.

In other words, a *binomial* is a polynomial made up of **TWO UNLIKE TERMS**. And a *trinomial* is a polynomial made up of **THREE UNLIKE TERMS**. Etc.

So when a problem asks you to "**classify**" a given polynomial, you must combine any like terms before you count the terms to classify the polynomial.

Example:

Combine like terms and then classify the polynomial that you have as a result.

a) $5x - 3x^2 + 2x - x^2$ b) 2x - 6 - 2x + 1

Check your understanding: pg. 187 – 189, #7 – 12,