## Chapter 5: Mid-chapter Review

- Make sure you have completed all of the previous homework assignments from sections 5.1 to 5.3, including the extra practice sheets from 5.2 and 5.3.
- Read FREQUENTLY ASKED Questions on page 325-326.
- Complete the following from PRACTISING on page 327:

$$
\text { \#1 - } 9 \text { (all) }
$$

## WYNTKABATD

## Section 5.1

- Determine whether a game is fair or not using theoretical probabilities.
- Understand the difference between experimental and theoretical probabilities.
- Create an outcome table or other sample space for a game or experiment.
- Express probabilities as fractions, decimals and percents that range from 0 to 1 ( $0 \%$ to $100 \%$ )


## Section 5.2

- Calculate probabilities for different types of events.
- Calculate the probability of an event NOT happening, given the probability that it does happen.
- Calculate odds in favour and odds against a certain event happening.
- Use a given probability to determine odds in favour or odds against.
- Use a given statement about odds to determine the probability of an event.


## Section 5.3

- Calculate probabilities and odds for events where outcomes must be counted using counting principles such as:

$$
F C P \quad n!\quad n P r \quad n C r \quad \frac{n!}{a!b!c!\ldots}
$$

## Important:

Ratios written as fractions like $\frac{a}{b}$ are reserved for probabilities. These are often converted to decimal values or to percents.
"Lowest terms" for a fraction - you must divide out common factors.
$\frac{88}{720}$ is not in lowest terms

Convert: $\frac{88}{720}=\frac{88 \div 8}{720 \div 8}=\frac{11}{90}$

## Important:

Ratios written with a colon like $c: d$ are reserved for odds. Odds are never converted to a decimal value or percent.
"Lowest terms" for a ratio - you can't have any fractions or decimals on either side of the colon and you must divide out common factors.
$\frac{4}{19}: \frac{15}{19}$ is not in lowest terms
Convert: $\frac{4(19)}{19}: \frac{15(19)}{19}=4: 15$
$0.36: 0.64$ is not in lowest terms
Convert: $0.36(100): 0.64(100)=36: 64=(36 \div 4):(64 \div 4)=9: 16$

85: 15 is not in lowest terms
Convert: $(85 \div 5):(15 \div 5)=17: 3$

## Fundamental Relationships:

$P(A)$ represents the probability that event $A$ occurs $\boldsymbol{P}\left(\boldsymbol{A}^{\prime}\right)$ represents the probability that event A does not occur

$$
\begin{aligned}
P(A) & =\frac{\# \text { of favourable outcomes }}{\text { total \# of outcomes possible }}=\frac{n(A)}{n(\text { sample space })} \\
P\left(A^{\prime}\right) & =\frac{\# \text { of unf avourable outcomes }}{\text { total } \# \text { of outcomes possible }}=\frac{n\left(A^{\prime}\right)}{n(\text { sample space })}
\end{aligned}
$$

$P(A)+P\left(A^{\prime}\right)=1($ or $100 \%)$
$P\left(A^{\prime}\right)=1-P(A) \quad$ or $\quad P(A)=1-P\left(A^{\prime}\right)$
$n(A)+n\left(A^{\prime}\right)=n($ sample space $)$
Odds in favour: $\quad P(A): P\left(\boldsymbol{A}^{\prime}\right)$ or $n(A): \boldsymbol{n}\left(\boldsymbol{A}^{\prime}\right)$
Odds against: $\quad P\left(A^{\prime}\right): P(A)$ or $n\left(A^{\prime}\right): n(A)$

