Mathematics 9

Unit 6: Scale Factor and Similarity

Lesson \#1: Solving Proportions \& Metric Conversions

Learning Targets:

1. How to tell when a pair of ratios forms a true proportion.
2. Solving for a missing value in a proportion statement.
3. Convert measurements from one metric unit to another.

Proportion definition:
A pair of ratios forms a \qquad if their cross-products are \qquad :
$\frac{a}{b}=\frac{c}{d}$ is a true proportion if \qquad $=$ \qquad
\qquad and \qquad are known as the cross-products.

Example: Are these true proportions? Show how you know using cross-products.
(a) $\frac{2}{5}=\frac{40}{100}$
(b) $\frac{3}{15}=\frac{18}{75}$

Solving Proportions using Cross-multiplication:
When there is one unknown value in a true proportion, we can solve for its value because the cross-products have to be equal.

Example: Solve $\frac{a}{6}=\frac{4}{12}$

Mathematics 9
Unit 6: Scale Factor and Similarity

Example: \quad Solve $\frac{7}{15}=\frac{x}{20}$

Example: \quad Solve $\frac{9}{5}=\frac{3}{y}$

Example: \quad Solve $\frac{11.7}{n}=\frac{17.2}{23.3}$

Mathematics 9

Unit 6: Scale Factor and Similarity

Metric Length Conversions:

$\begin{array}{ll}\text { Smallest unit is the millimetre }(\mathrm{mm}) & 1 \mathrm{~mm} \\ \text { Largest unit is the kilometre }(\mathrm{km}) & 10 \mathrm{~mm}=1 \mathrm{~cm} \\ & 1000 \mathrm{~mm}=100 \mathrm{~cm}=1 \mathrm{~m} \\ 1000000 \mathrm{~mm}=100000 \mathrm{~cm}=1000 \mathrm{~m}=1 \mathrm{~km}\end{array}$

Proportions can be used to perform metric conversions.

Example: How many metres are in 1000 cm ?

Example: How many metres are in 3.8 km?

Example: How many centimetres are in 140 mm ?

Example: How many metres are in 1587 cm?

Mathematics 9

Unit 6: Scale Factor and Similarity
Example: How many millimetres are in 3.87 m?

Example: How many metres are in 958.1 cm ?

Check your understanding: Handout 1: Solving Proportions \#1-22
Handout 2: Metric Conversions \#1-18, \#1-16

