Mathematics 9

Unit 4: Multiplying and Dividing Polynomials (Ch 7)

Lesson \#1: Multiplying and Dividing Monomials (Sec. 7.1)

Learning Targets:

1. Multiply a monomial with another monomial.
2. Divide a monomial by another monomial.
3. Applications: area of a rectangle; area of a triangle

Multiplying Two Monomials with the Same Variable:

(4a)(3a) Monomials are made up of a coefficient and variable(s) or variable power.
When we multiply two monomials we multiply both of the coefficients together, and both of the variables together.
=
$=\quad$ The answer is another monomial.

Practice:

1. $(2 x)(-8 x)$
2. $(-4 m)(-m)$
3. $(-10 p)(3 p)$

Multiplying Two Monomials with Different Variables:

$\mathbf{(5 x) (2 y)}$ When we multiply two monomials with different variables, we multiply both of the coefficients together, and write both of the variables in the answer (in alphabetical order).
=
$=$

Practice:

1. $(-5 m)(4 n)$
2. $(-8 x)(-6 y)$
3. $(-25 b)(3 a)$

Mathematics 9

Unit 4: Multiplying and Dividing Polynomials (Ch 7)

Multiplying Two Monomials when one is a Constant:
$(\mathbf{1 1 n})(3) \quad$ When we multiply two monomials and one of them is a constant, we multiply both of the coefficients and the constant together, and write the variable in the answer without it changing.
$=$
$=$

Practice:

1. $(-9)(3 x)$
2. $(-8 n)(-1)$
3. $(-2 \mathrm{a})(6)$

Practice - all types (fractions and decimals):

1. $(3.6 y)(-3 b)$
2. $\left(\frac{2}{3} m\right)\left(\frac{9}{2} m\right)$
3. $(-3 x)\left(\frac{5}{6}\right)$

Application: area of a rectangle

 Area $=(L)(W)$What expression would represent the area of this rectangle?

Application: area of a triangle

Area $=(0.5)(b)(h)$
What expression would represent the area of this triangle?

Mathematics 9

Unit 4: Multiplying and Dividing Polynomials (Ch 7)

Dividing Two Monomials with the Same Variable:

$\frac{16 x^{2}}{8 x} \quad$| When we divide two monomials that have the same variable, we divide the coefficients |
| :--- |
| together, and simplify the variables by using the exponent law for quotients. |

$=$
$=$

Practice:

1. $\frac{24 a^{2}}{-4 a}$
2. $-45 m^{2} \div 9 m$
3. $\frac{-5 b}{-10 b}$

Dividing Two Monomials with Different Variables:

When we divide two monomials with different variables, we divide the coefficients together, and leave the variables in the same positions.
$=$
$=$

Practice:

1. $\frac{-8 k}{4 n}$
2. $-12 a \div-6 b$
3. $\frac{15 y}{12 x}$

Mathematics 9

Unit 4: Multiplying and Dividing Polynomials (Ch 7)

Dividing Two Monomials with Variables that are the Same and Different:

$\frac{28 m n}{4 m} \quad$ We divide the coefficients together, use the exponent law on the variables that are the
$=$
$=$
$=$

Practice:

1. $\frac{4 x y}{-2 x}$
2. $-6 m n \div-3 m$

Dividing a Monomial by a Constant:

$\frac{30 x}{5}$
$=$
=

Practice:

When we divide a monomial by a constant, we divide the coefficient by the constant, and write the variable in the answer, without it changing.

1. $\frac{27 a b}{-9}$
2. $\frac{-35 m}{-7}$
3. $-18 p^{2} \div 3$

Mathematics 9

Unit 4: Multiplying and Dividing Polynomials (Ch 7)

Application: area of a rectangle

The area of a rectangle is $\mathbf{7 5} \mathbf{m n}$. If its length is $\mathbf{1 5 n}$, what is its width?

$$
\text { Area }=(L)(W) \rightarrow \text { Width }=\frac{\text { Area }}{\text { Length }} \quad \text { Length }=\frac{\text { Area }}{\text { Width }}
$$

Application: area of a triangle

The area of a rectangle is $\mathbf{1 8 \mathbf { x } ^ { \mathbf { 2 } }}$. If the base of the triangle is $\mathbf{6 x}$, what is its height?
Area $=(0.5)(b)(h) \rightarrow$ height $=\frac{2 \times \text { Area }}{\text { base }}$

$$
\text { base }=\frac{2 \times \text { Area }}{\text { height }}
$$

