Chapter 5 In-Class Review

Terminology/definitions - Matching Chapter 5 Practice Test: page 202 - 203, #1 - 15 Additional selected problems

Terminology/Definitions - Matching

- Algebra
- 2. Binomial D
- Degree of a polynomial
- 4. Degree of a term 🔼
- Like terms A
- Monomial
- 7. Polynomial
- 8. Term
- 9. Trinomial 🔚

- Terms that differ only by their numerical coefficient
- B. The sum of the exponents on the variables in a term
- C. 1 term
- D. 2 terms
- E. 3 terms
- F. A branch of mathematics that uses symbols to represent unknown numbers of quantities.
- G. The degree of the highest degree term in a polynomial
- H. An algebraic expression made up of terms connected by the operations of addition or subtraction.
- An expression formed from the product of numbers and/or variables.

1. Which polynomial is of degree 1?

(A)
$$3 - 7x$$

B
$$xy - 1$$

c
$$5x - 3xy$$

c
$$5x - 3xy$$
 d $x^2 - 5x + 2$

2. Which expression does not have zero as a constant term?

$$A -5x$$

B
$$k + 8$$

c
$$y^2 - 2y$$

$$\mathbf{D} ab + b - a$$

3. Which of the following is not equivalent

to
$$3x - 5 + 2 - 7x$$
? = $-4x - 3$

A -4x - 3

B 3x - 7x - 5 + 2

D

4. Which set of diagrams represents

- 5. Which expression is a trinomial?
 - $\mathbf{A} \quad abc^3$
 - **B** 3mn
 - c $ef + g^2$
 - **D** -1 x + a
- **6.** Which expression is the opposite of $-2k^2 + 3k 1$?
 - $A 1 3k + 2k^2$
 - **B** $1 3k + 2k^2$
 - c $1 3k 2k^2$
 - **D** $-1 3k 2k^2$

7. When you combine like terms, the expression $(2t^2) - 5 - 8t^2 - 4$ becomes

8. In the monomial $-q^2$, the value of the coefficient is \blacksquare .

9. Draw a diagram to represent $x^2 - 2x$.

10. Create a single polynomial with

- · two terms
- two variables
- degree 2
- a constant term

11. What is an expression, in simplest form, for the perimeter of the triangle?

12. Write an expression to represent what the diagrams show. Then, simplify.

13. Simplify. Use models for at least one of the expressions. Show your work.

a)
$$(2x^2 - 8x + 1) + (9x^2 + 4x - 1)$$

b)
$$(4-6w)-(3-8w)$$

a)
$$2x^{2} - 8x + 1$$

 $9x^{2} + 4x - 1$
 $11x^{2} - 4x$

- **13.** Simplify. Use models for at least one of the expressions. Show your work.
 - a) $(2x^2 8x + 1) + (9x^2 + 4x 1)$
 - **b)** (4-6w) (3-8w)

b) (4) 6w) (-3)+8w)

- **14.** The number of peanuts two squirrels bury can be represented by 4n + 7 and 5n - 1, respectively.
 - a) Write and simplify an expression for the number of peanuts both squirrels bury.

b) What could the expression (5n-1) - (4n+7) represent?

How many more peanuts one squirrel buried compared to the other squirrel.

What is a simpler expression for

$$(5n-1) = \frac{(4n+7)}{(-4n-7)}$$

= $(-4n-7)$

- 15. The cost for a birthday party at Big Fun Bowling is \$100 for up to ten children, plus \$5 per pair of bowling shoes. To rent the party room, the cost is \$20, plus \$4 per child for pizza.
 - a) What is an expression for the cost of bowling for up to ten children?
 - b) What is an expression for the cost of pizza in the party room for up to ten children?
 - c) What is a simplified expression for the total cost of up to ten children going bowling and having pizza in the party room?

$$N = # of children$$

$$100 + 5n$$

$$20 + 4n$$

d) Estimate, then calculate, the cost of nine children going bowling and having pizza in the party room.

Use your expression from part c)

$$9n + 120$$

 $9(9) + 120$
 $= 81 + 120 = 201

For each of the following polynomials, simplify and write in descending degree (if necessary) and then classify and state the degree of the polynomial:

If the perimeter of this triangle is 18x² - 2x + 3, find the expression that represents the unknown side:

Ch. 5 Review

pg. 200-201

#1 - 28