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  Mixed radicals have a coefficient 

 

  Entire radicals have no coefficient 

 

 

 

Prior Learning (Math 10 Foundations and Pre-calculus) 

Integers that are perfect powers, have integer roots. 

√16 = 4   √27
3

= 3  √625
4

= 5 

Some perfect powers and their roots are shown in the table: 

 

Multiplication Property of Radicals:   √𝒂𝒃
𝒏

= √𝒂
𝒏

∙ √𝒃
𝒏

 

Examples: √24 = √4 ∙ √6 

  √54
3

= √27
3

∙ √2
3

 

 

This multiplication property allows us to simplify square roots, cube 

roots, fourth roots, etc. of numbers that aren’t perfect powers, but 

do have factors that are perfect powers. 

To write a radical of index n in simplest form, we write the radicand as a product of two factors, one of 

which is the greatest nth power.  If the radicand does not contain any nth power factors other than 1, 

then the radical is in simplest form. 

Examples: √24 = √4 ∙ 6 = √4 ∙ √6 = 2 ∙ √6 = 2√6   * Note – we write our final answers 

  √54
3

= √27 ∙ 2
3

= √27
3

∙ √2
3

= 3 ∙ √2
3

= 3√2
3

     without the multiplication symbol 

  √100
4

  can’t be simplified because none of the 4th powers (except 1) are factors of 100 

Root Perfect Powers 

x x2 x3 x4 x5 

1 1 1 1 1 

2 4 8 16 32 

3 9 27 81 243 

4 16 64 256  

5 25 125 625  

6 36 216   

7 49 343   

8 64 512   

9 81 729   

10 100 1000   

11 121    

12 144    

13 169    

14 196    

15 225    

16 256    

17 289    

18 324    

19 361    

20 400    
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Example: Many larger radicands could have more than one nth power factor 

  √200 =  √𝟒 ∙ 50  Which one of these three factorizations of 200 

  √200 =  √𝟐𝟓 ∙ 8  contains the “greatest nth power” factor of 200? 

  √200 =  √𝟏𝟎𝟎 ∙ 2     This one does (100 is the greatest perfect square factor of 200) 

  ∴ √200 = √100 ∙ 2 = √100 ∙ √2 = 10√2 

 

Creating Entire Radicals: 

To write a mixed radical as an entire radical, simply reverse the process we use to simplify a radical: 

4√3 = √16 ∙ √3 = √16 ∙ 3 = √48   square root radical  write 4 as √16 

3√5
3

= √27
3

∙ √5
3

= √27 ∙ 5
3

= √135
3

   cube root radical  write 3 as √27
3

 

2√7
4

= √16
4

∙ √7
4

= √16 ∙ 7
4

= √112
4

   fourth root radical  write 2 as √16
4

 

 

Section 5.1:  Working with Radicals (2 days) 

Key Ideas: (1)  What is meant by simplest form 

  (2)  Simplifying mixed and entire radicals to simplest form 

  (3)  Converting mixed radicals to entire radicals 

  (4)  Radicands containing variable expressions 

  (5)  Restrictions on variables 

  (6)  Like radicals and unlike radicals 

  (7)  Addition and subtraction of like radicals 

 

Simplest form:  a radical is in simplest form if the radicand does not contain a fraction or decimal, or any 

factor which may be removed, and the denominator does not contain a radical. 

 “any factor which may be removed” refers to perfect power factors (see chart on page 1). 

 radicands containing a fraction or decimal, and radicals in denominators will be dealt with in 

section 5.2 
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Simplifying mixed and entire radicals – building on what we know: 

How does the presence of a coefficient change the simplifying process? 

Consider √75 and 4√75.   A coefficient of 4 means “multiply by 4” so 4√75 simply means “4 times the 

square root of 75” 

√75 = √25 ∙ 3 = √25 ∙ √3 = 5√3  this is what we already know 

4√75 = 4(5√3) = 𝟐𝟎√3 the original coefficient multiplies onto the coefficient we get from  

simplifying the entire radical (it does not multiply the radicand) 

 

Converting mixed radicals to entire radicals – building on what we know: 

Anytime a radical has a coefficient of either 1 or -1, it is considered an entire radical.  A coefficient of -1 

simply shows up as a negative sign in front of the radical symbol. 

When converting a mixed radical with a negative coefficient into an entire radical, we will never put the 

negative inside the radical.  It will end up as a negative sign in front of the radical symbol of the entire 

radical: 

−3√10 = −(3√10) = −1(√9 ∙ √10) = −1√9 ∙ 10 = −√90  

−8√2
3

= −√512
3

∙ √2
3

= −√512 ∙ 2
3

= −√1024
3

  

 

Radicals with variable expressions – building on what we know: 

Perfect squares for variables will have exponents that are multiples of 2.  When we take the square root 

of a perfect square variable, the exponent gets divided by 2. 

 √𝑥2 = 𝑥  √𝑎6 = 𝑎3  √𝑚16 = 𝑚8  etc. 

Perfect cubes for variables will have exponents that are multiples of 3.  When we take the cube root of a 

perfect cube variable, the exponent gets divided by 3. 

 √𝑥33
= 𝑥  √𝑎63

= 𝑎2  √𝑚183
= 𝑚6  etc. 

Perfect fourth powers for variables will have exponents that are multiples of 4.  When we take the 

fourth root of a perfect fourth power variable, the exponent gets divided by 4. 

 √𝑥44
= 𝑥  √𝑎124

= 𝑎3  √𝑚204
= 𝑚5  etc. 
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Perfect fifth powers for variables will have exponents that are multiples of 5.  When we take the fifth 

root of a perfect fifth power variable, the exponent gets divided by 5. 

 √𝑥55
= 𝑥  √𝑎155

= 𝑎3  √𝑚205
= 𝑚4  etc. 

When a radical contains variables in its radicand, it is not in simplest form unless every exponent is less 

than the index of the radical.  If the exponent is greater than or equal to the index, it can be simplified. 

Simplifying radicals containing variable expressions will involve breaking down the variable expression as 

the product of two expressions, one of which is the expression with the highest exponent that is a 

perfect power for the index.   

THIS PROCESS REQUIRES THE APPLICATION OF THE EXPONENT LAW FOR THE PRODUCT OF POWERS 

WITH THE SAME BASE:  𝒂𝒎 ∙ 𝒂𝒏 = 𝒂𝒎+𝒏 

 

Examples: √𝑥3 = √𝑥2 ∙ 𝑥 = √𝑥2 ∙ √𝑥 = 𝑥√𝑥 

  √𝑎113
= √𝑎9 ∙ 𝑎23

= √𝑎93
∙ √𝑎23

= 𝑎3 √𝑎23
 

The exponents on multiple variables get handled separately: 

 √𝒎𝟓𝒏𝟒  break down 𝒎𝟓 as 𝒎𝟒 ∙ 𝒎, 𝒏𝟒 is a perfect square already so we leave it as is 

 = √𝒎𝟒 ∙ 𝒎 ∙ 𝒏𝟒 = √𝑚4 ∙ √𝑛4 ∙ √𝑚 = 𝑚2 ∙ 𝑛2 ∙ √𝑚 = 𝑚2𝑛2√𝑚 

 

To create entire radicals from mixed radicals where the coefficient contains variables, the process is 

reversed: 

𝐚𝟑√a  to put the coefficient back in a square root radical, we must DOUBLE its 

exponent 

 = √𝐚𝟔 ∙ a now add the exponents according to the exponent law 

= √a7  

 

 𝐚√a23
   to put the coefficient back into a cube root radical, we must TRIPLE its exponent 

 = √𝐚𝟑 ∙ a23
  now add the exponents according to the exponent law 

 = √a53
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Restrictions on variables in radicands (restrictions occur for two reasons): 

1) To avoid having radicals that are undefined 

Undefined radicals occur when even index radicals have negative radicand values. 

Remember: you can’t find the square root of a negative number (or the fourth root, sixth root, etc) 

Therefore, expressions such as √𝑥  and √𝑥34
 are only valid if the value of 𝑥 is not negative.  In general, 

any even index radical that contains variables with odd exponents will have such a restriction. 

 Restriction: 𝒙 ≥ 𝟎 (𝑥 must be greater than or equal to zero) 

Odd index radicals are allowed to have negative radicands.  Therefore, there are no such restrictions on 

variables in the radicands of odd index radicals. 

 

2) To maintain the equality between a given expression and its reduced or simplified form 

Entire radicals with no negative sign in front must maintain a positive value after being simplified or 

reduced. 

Thus √𝑥2 = 𝑥 is really only true if 𝑥 is not negative  Restriction:  𝒙 ≥ 𝟎 

And √𝑥6 = 𝑥3 is really only true if 𝑥 is not negative  Restriction:  𝒙 ≥ 𝟎 

But √𝑥4 = 𝑥2  would be true for any value of 𝑥, so there would be no restriction 

 

 Summary for Restrictions: 

a) Restrictions will only apply to even index radicals, not odd index radicals. 

b) If an even index radical in simplest form has any variable with an odd exponent in the 

radicand, the variable has the restriction of “must be greater than or equal to zero”. 

c) If any variable has an even exponent as part of an unsimplified radicand, but an odd 

exponent when reduced or simplified, the variable must be greater than or equal to zero. 

d) If any variable has an even exponent as part of an unsimplified radicand, and an even 

exponent when reduced or simplified, there will be no restriction on that variable. 
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Like radicals and unlike radicals: 

Two radicals are considered to be “like radicals” if they have the same index and the same radicand 

(after being reduced to simplest form).  Radicals with different index numbers are always unlike radicals.  

Radicals with different radicands (after being reduced to simplest form) are considered unlike radicals. 

Like radicals:  4√2 and −7√2   √15
3

 and 6√15
3

 

Unlike radicals  √7
3

  and √7   √6 and √10 

Only “like radicals” can be combined using addition and subtraction. 

Addition and subtraction of like radicals: 𝒎√𝒂
𝒓

+ 𝒏√𝒂
𝒓

= (𝒎 + 𝒏)√𝒂
𝒓

 

      𝒎√𝒂𝒓 − 𝒏√𝒂𝒓 = (𝒎 − 𝒏)√𝒂𝒓  

- combine their coefficients 

- the radical remains unchanged 

Example: √4
3

+ 5√4
3

= (1 + 5)√4
3

= 6√4
3

 

4√11 − 19√11 = (4 − 19)√11 = −15√11  

 

 

 


