Terminology:

In mathematical relations, the domain and range are usually represented by variables, (often x and y).

When using x and y:

The variable of the ______ is _____. It is known as the ______ variable.

The variable of the ______ is _____. It is known as the ______ variable.

To illustrate:

x	У
-2	-7
-1	-4
0	-1
1	2
2	5

Tables of values:

Number of Tickets,	Cost, C	Domoini		
n	(\$)	Domain:		
1	3.50			
3	5.25	Range:		
4	7.00			
5	8.75			
		Function?	Y	N

Arrow diagrams:

Function Notation:

We can think of a function as an input/output machine. The input can be any number in the domain, and the output depends on the input number.

So, the input is the ______ variable and the output is the variable.

Consider a machine that accepts quarters and then calculates the value of the quarters:

Machine A

Since every quarter has a value of \$0.25, this function can be described with an equation that involves an independent variable "q" (input) that represents the number of quarters, and a dependent variable "V" (output) that represents the value of the number of quarters that was input:

$$V=0.25q$$

Using "function notation" we can write this equation in a slightly different way:

V(q)=0.25q	This notation shows that V is the dependent variable
we say "V of q"	and that V depends on q

The expression V(5) represents the value of the function when q = 5. (What this means is we need to "calculate the value of the output when the input is 5".)

V(5) = substitute and evaluate

Example:

Write the following equations of functions using *function notation*. Identify the independent and dependent variables.

(1) C = 25n + 1000 (2) y = -4x + 10

Example: f(x) = 3x + 5

Evaluate the following:

(1)
$$f(-2)$$
 (2) $f(0)$ (3) $f(12)$

Example: f(x) = 2x - 9

Determine the value of x:

(1)
$$f(x) = -1$$
 (2) $f(x) = 11$

Example:

The function $F(C) = \frac{9}{5}C + 32$ will convert a temperature in degrees Celsius into a temperature in degrees Fahrenheit.

What does F(40) calculate?

What does F(-3) calculate?

Calculate F(40)

Calculate F(-3)

Check your understanding: pg. 270 - 271, #6, 7, 9, 14, 15, 16, 17, 19