Properties of Functions

Terminology:

In mathematical relations, the domain and range are usually represented by variables, (often x and y).

When using x and y :
The variable of the \qquad is \qquad .
It is known as the \qquad variable.

The variable of the \qquad is \qquad .
It is known as the \qquad variable.

To illustrate:

x	y
-2	-7
-1	-4
0	-1
1	2
2	5

Tables of values:

Number of Tickets,	Cost, C			
\boldsymbol{n}	$(\$)$	Domain:		
1	1.75			
2	3.50			
3	5.25	Range:		
4	7.00			
5	8.75	Function?	\mathbf{Y}	\mathbf{N}

Properties of Functions

Arrow diagrams:

Function Notation:

We can think of a function as an input/output machine. The input can be any number in the domain, and the output depends on the input number.

So, the input is the \qquad variable and the output is the variable.

Consider a machine that accepts quarters and then calculates the value of the quarters:

- Machine A

Function V

Since every quarter has a value of $\$ 0.25$, this function can be described with an equation that involves an independent variable "q" (input) that represents the number of quarters, and a dependent variable " V " (output) that represents the value of the number of quarters that was input:

$$
V=0.25 q
$$

Properties of Functions

Using "function notation" we can write this equation in a slightly different way:

$$
\begin{array}{ll}
\boldsymbol{V}(\boldsymbol{q})=0.25 \boldsymbol{q} & \text { This notation shows that } V \text { is the dependent variable } \\
\text { we say "V of q" } & \text { and that } V \text { depends on } q
\end{array}
$$

The expression $\mathbf{V}(\mathbf{5})$ represents the value of the function when $\mathbf{q}=\mathbf{5}$.
(What this means is we need to "calculate the value of the output when the input is 5 ".)
$\mathbf{V}(5)=\quad$ substitute and evaluate

Example:

Write the following equations of functions using function notation.
Identify the independent and dependent variables.
(1)
$C=25 n+1000$
(2) $y=-4 x+10$

Example: $\quad f(x)=3 x+5$
Evaluate the following:
(1) $\quad f(-2)$
(2) $\quad f(0)$
(3) $\quad f(12)$

Properties of Functions

Example: $\quad f(x)=2 x-9$
Determine the value of x :
(1) $\quad f(x)=-1$
(2) $\quad f(x)=11$

Example:

The function $F(C)=\frac{9}{5} C+32$ will convert a temperature in degrees Celsius into a temperature in degrees Fahrenheit.

What does $F(40)$ calculate? What does $F(-3)$ calculate?

Calculate $F(40)$
Calculate $F(-3)$

