Ch. 3: Polynomial Functions

3.1 Characteristics of Polynomial Functions

Polynomial Function- is a function in the form:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

where:

where:
n is a whole number -> exponents can't be fractions,
x-variable

decimals, or regative.

the coefficients are real numbers.

<u>txamples</u>:

The degree of a polynomial is determined by the largest exponent of an individual term.

$$f(x) = 5x^{4} + 3x^{2} - 2x$$
 degree 4

$$f(x) = (x+2)(x+3)$$

$$f(x) = x^2 + 5x + 6$$
degree 2

You try!

$$f(x) = (x^2 + 2)(x^3 + 2x - 1)(x - 2)$$

What do you think the degree is?

The degree also determines the maximum number of x-intercepts.

Degree 0- no x intercepts

Degree 1- max one x intercept

Degree 2- max 2 intercepts

Degree 3- max 3 intercepts and so forth.

End Behaviour

Any polynomial with an odd (1,3,5...) degree will have a similar end behavior as a line.

If the polynomial has an odd degree and a positive leading coefficient, the graph is moving up, starting in quadrant 3 and ending in quadrant 1.

If the polynomial has an odd degree and a negative leading coefficient, the graph is moving down, starting in quadrant 2 and ending in quadrant 4. Any polynomial with an even degree (2,,4,6,8...) will have the same end behavior as a parabola. Parabola has a degree of 2

If the polynomial has an even degree and a positive leading coefficient, the graph starts in quadrant 2 and ends in quadrant 1.

If the polynomial has an even degree and a negative leading coefficient, the graph starts in quadrant 3 and ends in quadrant 4.

Any polynomial where the leading coefficient is (+) will extend up into quadrant 1. Any polynomial where the leading coefficient is (-) will extend down into quadrant 4.

Identifying Polynomial Functions

State whether each function is a polynomial? If so state the degree, the leading coefficient, and the constant term.

a)
$$y = 2x^2 - 3x + 2$$
 yes, degree a , $LC = 2$, $Const = 2$.
b) $y = 3^x + 5$ not polynomial
c) $g(x) = (3x + 2)(x - 6)$ yes, degree a , $LC = 3$, $Const = -1a$
d) $g(x) = x^{-2} + 7x^3$ not polynomial
e) $y = \sin x$ not polynomial

You try!

Which functions are polynomials? Justify your answer. State the degree, the leading coefficient, and the constant term of each polynomial function.

a)
$$g(x) = \sqrt{x} + 5$$

b)
$$f(x) = 3x^4$$

c)
$$y = |x|$$

d)
$$y = 2x^3 + 3x^2 - 4x - 1$$

Yes/No	Degree	Lood coeff	constant
a) No			
b) Yes c) No d) Yes	4 3	3 2	<u> </u>

See page 109 textbook

Degree 0: Constant Function

Even degree

Number of x-intercepts: 0 (for $f(x) \neq 0$)

Example: f(x) = 3

End behaviour: extends horizontally

Domain: $\{x \mid x \in R\}$

Range: {3}

Degree 1: Linear Function

Odd degree

Number of x-intercepts: 1

Example: f(x) = 2x + 1

End behaviour: line extends down into

quadrant III and up into quadrant I

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \in R\}$

Degree 2: Quadratic Function

Even degree

Number of x-intercepts: 0, 1, or 2

Example: $f(x) = 2x^2 - 3$

End behaviour: curve extends up into

quadrant II and up into quadrant I

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \ge -2, y \in R\}$

Degree 3: Cubic Function

Odd degree

Number of x-intercepts: 1, 2, or 3

Example:

$$f(x) = x^3 + 2x^2 - x - 2$$

End behaviour: curve extends down into

quadrant III and up into quadrant I

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \in R\}$

Degree 4: Quartic Function

Even degree

Number of x-intercepts: 0, 1, 2, 3, or 4

Example:

$$f(x) = x^4 + 5x^3 + 5x^2 - 5x - 6$$

End behaviour: curve extends up into quadrant II and up into quadrant I

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \ge -6.91, y \in R\}$

Degree 5: Quintic Function

Odd degree

Number of x-intercepts: 1, 2, 3, 4, or 5

Example:

$$f(x) = x^5 + 3x^4 - 5x^3 - 15x^2 + 4x + 12$$

End behaviour: curve extends down into quadrant III and up into quadrant I

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \in R\}$